Aneuploidy, stem cells and cancer.
نویسندگان
چکیده
Telomeres which protect the individual chromosomes from disintegration, end-to-end fusion and maintain the genomic integrity during the somatic cell divisions play an important role in cellular aging. Aging and cancer development are linked with each other because cancer is considered a group of complex genetic diseases that develop in old cells and, in both, telomere attrition is involved. Numeric chromosome imbalance also known as aneuploidy is the hallmark of most solid tumors, whether spontaneous or induced by carcinogens. We provide evidence in support of the hypothesis that telomere attrition is the earliest genetic alteration responsible for the induction of aneuploidy. Dysfunctional telomeres are highly recombinogenic leading to the formation of dicentric chromosomes. During cell divisions, such complex chromosome alterations undergo breakage fusion bridge cycles and may lead to loss of heterozygosity (LOH) and gene amplification. Furthermore, we have provided evidence in support of the hypothesis that all types of cancer originate in the organ- or tissue-specific stem cells present in a particular organ. Cancer cells and stem cells share many characteristics, such as, self-renewal, migration, and differentiation. Metaphases with abnormal genetic constitution present in the lymphocytes of cancer patients and in some of their asymptomatic family members may have been derived from the organ-specific stem cells. In addition, evidence and discussion has been presented for the existence of cancer-specific stem cells. Successful treatment of cancer, therefore, should be directed towards these cancer stem cells.
منابع مشابه
Stem-Like Adaptive Aneuploidy and Cancer Quasispecies
We analyze and reinterpret experimental evidence from the literature to argue for an ability of tumor cells to self-regulate their aneuploidy rate. We conjecture that this ability is mediated by a diversification factor that exploits molecular mechanisms common to embryo stem cells and, to a lesser extent, adult stem cells, that is eventually reactivated in tumor cells. Moreover, we propose a d...
متن کاملCancer quasispecies and stem-like adaptive aneuploidy
In this paper we develop a theoretical frame to understand self-regulation of aneuploidy rate in cancer and stem cells. This is accomplished building upon quasispecies theory, by leaving its formal mathematical structure intact, but by drastically changing the meaning of its objects. In particular, we propose a novel definition of chromosomal master sequence, as a sequence of physically distinc...
متن کاملAneuploidy causes premature differentiation of neural and intestinal stem cells
Aneuploidy is associated with a variety of diseases such as cancer and microcephaly. Although many studies have addressed the consequences of a non-euploid genome in cells, little is known about their overall consequences in tissue and organism development. Here we use two different mutant conditions to address the consequences of aneuploidy during tissue development and homeostasis in Drosophi...
متن کاملA Glance into Cancer Stem Cells
The presence of stem cells in leukemia and solid tumors has been demonstrated in recent decades. Cancer stem cells have the potency of tumorigenesis; furthermore, they have the ability of self-renewing and differentiation like other stem cells. They also play important role in the process of tumor invasion and metastasis. Several studies have been performed to discover the spe...
متن کاملمطالعه اثر مهاری ایبوپروفن بر رگ زایی در سلول های بنیادی سرطان معده
Background and purpose: Angiogenesis provides proper nutrition and helps to the development and spread of cancer cells. Cancer stem cells are a rare population of tumor cells responsible for initiation, spreading and growth of cancer. Angiogenesis occurs more in cancer stem cells compared with other cancer cells. Ibuprofen, as a member of nonsteroidal anti-inflammatory drugs (NSAIDs) group is u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EXS
دوره 96 شماره
صفحات -
تاریخ انتشار 2006